Fluvial Geomorphic Investigation UNT Neshaminy Creek The Estates, Doylestown Twp, Bucks County, PA

> Allen Whitehead, Kevin Munley, Edward Filip PA DEP

# Upstream of Kelly Drive



# Bankfull Stage

The stream flow which most effectively moves sediment, forms bars, bends, and meanders which result in the general characteristics of the channel.

It is a flow which recurs, on average, every 1.5\* years. Dunne and Leopold, 1978

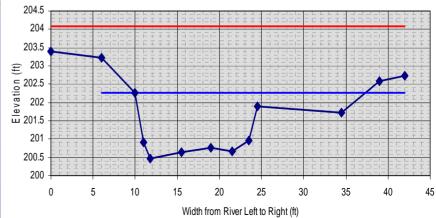
\* In Urbanized SE PA: 1.1 – 1.2 Years.

#### 100ft. Downstream of Kelly Drive



Upstream Forested Reach XS#2 ~ Sta 1+30 Riffle UNT Neshaminy Creek

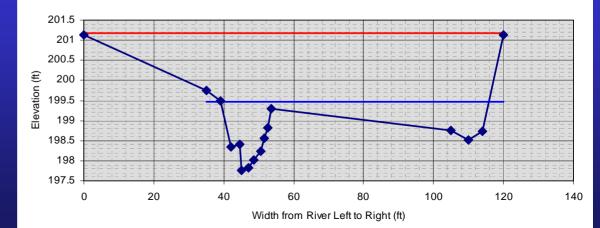



#### 250ft. Downstream



#### 1350ft. Downstream



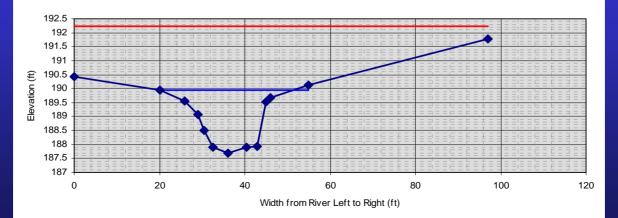

Reach I - XS #3 - Sta. 13+50 Riffle UNT Neshaminy Creek



#### 1700ft. Downstream (Below Nicklaus Drive)



Reach II (Downstream) - XS #2 - sta. 0+75 - Riffle UNT Neshaminy




#### 2500ft. Downstream





Reach II (Downstream) - XS #1 - sta.10+64 - Riffle UNT Neshaminy



### 4000ft. Downstream (Below Last Dam)



#### What Makes a Stable Stream?

- The balancing of competing forces to achieve "Dynamic Equilibrium"
  - Slope vs. Sinuosity
    - Dependant on particle sizes
    - In Balance with Valley Slope
  - Correct Width/Depth Ratio (15–20)
    - Essential for Sediment Transport
  - Channel Connected with Floodplain
    - >2.2 x Bankfull Channel Width

What Are The Major Problems?

## DAMS



- Reduced Slope
- Impaired Sediment Transport
- Sediment Accumulation
- Reduced Channel Capacity

### Culverts

- Increased W/D Ratio
- Impaired Sediment Transport





# Upstream Channelization and Armoring



- Increased Slope and Velocity, Leading to:
  - Bank Erosion
  - Channel incision
  - High Sediment Supply
  - Loss of FloodplainAccess



#### Unmanaged Stormwater



 Volume and Timing of Peak Flows



# What is the Goal?



#### Newly Restored Stream Channel



## Plan A - The Ideal Solution (From DEP's Perspective)

- Restore from Kelly Dr. to Almshouse Rd.
  - Multiple phases possible.
- Reduce peak stormwater discharges.
- Remove all dams.
- Re-grade floodplain.
- Restore natural dimension, pattern, and profile.
- Modify or eliminate footbridges.
- Plant native riparian vegetation.

#### Plan B – A Limited (More Realistic) Solution

- Same as Plan A, but in a more limited area.
- Stormwater issue handled separately and at a later time.
- Some sediment issues may persist.

### Plan C – A Minimal Solution

- Restore between the two upstream dams only.
  - Natural dimension, pattern, and profile.
  - Bankfull bench at the Nicklaus Drive culvert.
  - Floodplain re-grading and channel relocation where needed.
  - Minimal (10ft.) native riparian buffer.
  - Modify footbridge.

## Plan D – Do Nothing

- Accept Present Flooding and Erosion.
   Patch and armor as necessary.
- Remove Unwanted Sediment.

## **Restoration Pros and Cons**

- Flooding frequency and extent drastically reduced.
- Sediment stays in the channel.
- Better stream habitat, greater aquatic diversity.
  <u>A BIG plus for DEP grant consideration\*.</u>
- Stream access may be limited, views reduced.
- Dam removal may be seen as a scenic loss.
- Fewer and/or larger footbridges.
- Stream channel position may be different.
- Floodplain may be lower, lawn area reduced.
  - Yards may be perceived as "less tidy."
- \*If the scope of the project is too limited, DEP may consider the project less fund-worthy.